

Flx ReFeRence manual

RsTs Fi le sysTem uTil iTy

Revision: April 27, 2016

Version: 2.6

ii FLX User’s Guide

Copyright

This document and the FLX program are copyright © 1994-2016 by Paul Koning. They are distributed
under an open source License (BSD 3-clause license). This means, among other things, that you may
freely copy it at no charge. See file LICENSE for details.

Feedback

The author would appreciate any comments, criticisms, or bug reports. Please note that this is an
unsupported program, and any bug fixes or enhancements will be done strictly on a “time available” basis.
Send feedback to:

 Paul Koning
 408 Joe English Road
 New Boston, NH 03070
 ni1d@arrl.net

Dedication and Credits

This program is dedicated to the memory of Simon S. Szeto and William J. Sconce, RSTS friends
extraordinary.

Thanks to Fred Knight of Digital Equipment Corporation for providing the original inspiration (RSTSFLX
for VMS); to DJ Delorie for his DOS version of GNU C; to John Wilson of DBit for Ersatz-11, PDP-11
simulator for the PC; and to Bob Supnik of Digital Equipment Corporation for his help in making FLX
generally available.

 Version iii

1.	 INTRODUCTION 1	

1.1	 NEW FEATURES 1	
1.2	 COMMAND LINE FORMAT 1	
1.3	 FILE SPECIFICATIONS 1	
1.4	 CONTAINER FILES 2	

2.	 COMMANDS 2	

2.1	 COMMAND SYNONYMS 3	

3.	 SWITCHES 3	

4.	 SOME EXAMPLES 4	

5.	 MORE DETAILS ON CERTAIN COMMANDS: 5	

5.1	 GET 5	
5.1.1	 TREE TRANSFER MODE 6	

5.2	 PUT 6	
5.2.1	 TREE TRANSFER MODE 6	

5.3	 CLEAN COMMAND 7	
5.4	 CONTAINER FILES AND REAL DISKS 7	

5.4.1	 REAL DISK ACCESS 7	
5.4.2	 REAL DISK ACCESS IN DOS 8	
5.4.3	 REAL DISK ACCESS WITH OTHER OPERATING SYSTEMS 8	

5.5	 INITIALIZING A DISK 9	
5.5.1	 THE -MERGE SWITCH 9	

6.	 WHAT’S ON THE KIT 9	

 Version 1

1. Introduction
FLX is a program (written in C) that lets Unix or DOS systems read and write RSTS disks, or container files that
contain disk data. It supports any size disk that RSTS supports (including “large” disks, those with device cluster
size greater than 16), and any size file.

1.1 New features
The following features were added or changed since the last released version (V1.3):

� New commands:

� clean—check and, if necessary, correct the file structure (for example after a crash)

� Command line editing and recall using the GNU “readline” library

1.2 Command line format
The FLX command line has the following general form:

command [switches... | files...]

The command may be given as part of invoking the program (i.e., “flx” followed by the command line). In that
case, the command line is executed and FLX exits. If no command is given, FLX prompts for a command, executes
it, and prompts for another. Switches and file name arguments may be mixed in any order; unlike many Unix
commands, there is no requirement to put the switches before the file names. However, if a switch has an argument,
the argument must follow immediately after the switch.

Special case: if you invoke the program with its name and the “disk” command, the command will be executed
(selecting the named container file) but FLX will not exit.

Commands and switches may be abbreviated to the shortest unambiguous abbreviation. They are case sensitive, and
apart from a few switches are in lower case. There is no notion of “conflicting” switch (as DCL has) where one
switch overrides a preceding switch of opposite meaning. If you include conflicting switches in a command,
typically one will be ignored, but it doesn’t depend on the order. So don’t do that...

In Unix, FLX supports command line recall and command line editing similar to other GNU utilities, using the
standard “getline” library. The DOS version does not yet support this (I hope to get it in someday soon).

1.3 File specifications
Most commands take one or more filespecs as arguments. These may be wildcarded. Beware of shell wildcard
expansion; that generally isn’t what you want. So if you use wildcards, you’ll usually need to quote the filenames,
or to let FLX prompt you for the command line. (When FLX prompts, shell wildcard expansion is not done.)
However, with the “put” command the input filespecs are filespecs in the host system, not on the RSTS disk, and in
that case you generally do want to let the shell do wildcard expansion for you.

RSTS filespecs accepted by FLX generally conform to normal RSTS rules, with a few limitations and additions.
The allowed field are PPN, name, extension, protection (in that order). As is normal in RSTS, name and extension
are not case sensitive.

PPN can be a normal RSTS PPN spec [proj,prog] or (proj,prog) or—to avoid some shell quoting—a Unix style spec
/proj/prog/. If no other fields follow, the trailing / may be omitted. Note that the PPN must come first (you cannot
put it at the end of the filename). PPN shorthands $! % & are accepted; # and @ are not since they have no obvious
meaning when you’re not logged in to a RSTS account. For most commands, the default PPN is [1,2].

2 FLX User’s Guide

Unless otherwise stated below, the file name may not be null (but the extension may be). As in recent RSTS
releases, trailing ? characters in name or extension may be replaced by a *. So “a?????” and “a*” are equivalent.

1.4 Container files
The RSTS disk or container file is specified in one of three ways:

1. If the -disk switch is present, the argument of that switch is the disk filespec.

2. Otherwise, if a default disk has been set with the disk command, that name is used.

3. Otherwise, if environment variable RSTSDISK is defined, its value is the disk filespec.

4. Otherwise, container file “rsts.dsk” in the current directory is used.

FLX uses read-only access to the disk or container file if the command only does reading (e.g., get, list), and
requires read/write access only for commands that modify the disk.

Protection code is <prot> as usual.

2. Commands
The table below lists all the commands.

Table 1: Commands

allocation Display disk block allocation information. The first and last pack cluster and the size of each
free area is displayed, as well as summary data giving amount free, amount used, and size of
largest free contiguous area. If -brief is specified, only the summary data is shown.

clean Verify the correctness of the RSTS file structure, and correct any errors found. This also
rebuilds the storage allocation bitmap from scratch. It can be done at any time, and must be
done to re-enable writing to the disk if it is “dirty” (not dismounted correctly, typically due to a
crash). Minor corrections are made without asking; anything substantial requires confirmation.
There is also a “read only” check mode that verifies without changing anything.

compress Prepare the RSTS disk or container file for compression, by zeroing out all unused clusters.
Normally unused clusters contain whatever data was left in them, which makes file
compression less effective.

delete Delete RSTS files.
disk Set the default RSTS disk or container name. If no argument is given, the default is cleared.

Otherwise, it is set to the supplied value. The argument is interpreted in the same way as the
-d switch. A second argument, if supplied, specifies the disk size for real disks, in the same
way as the -Size switch. The default set with the disk command applies for all subsequent
commands unless overridden by a -d or -S switch.

dump Display an octal and ASCII dump (and, if -wide is specified, RAD50) of a file. If a PPN is
given but the name is not, the UFD is dumped. If neither is given, you get an NFS dump of the
disk. (Note that currently you cannot get a file structured dump of MFD or GFD.)

exit Quit FLX (useful when it’s in prompting mode).
get Copy files from RSTS disk to your host system. The last argument is an output filespec. It may

be a directory name, in which case you get a lot of separate output files, each consisting of the
directory name plus the input filename. If -tree was specified, each file ends up in a host
system directory underneath the one you specified, whose name is derived from the RSTS
directory it came from. If the output is not a directory name, you get a single output file,
containing the concatenation of all the input data. An input filespec consisting only of a PPN
will cause the UFD to be copied. (To copy all files in a directory, specify *.* as the filename.)

hook Write the boot block. First argument is the device type (default DL), case insensitive. Second
argument is the file to hook (default [0,1]init.sys). Third argument is the file from which

 Version 3

to read the bootstrap code (default whatever argument 2 is). All arguments are optional.
identify Display summary information about the disk, such as pack label, flags, and size.
initialize Initialize the disk as an RSTS file structured disk. The pack ID is the first argument; the second

argument, if present, supplies the RDS level desired. Default is RDS 1.2. The MFD, [0,*]
GFD, and [0,1] UFD are allocated with a clustersize of 16.

list Show a directory listing. Default PPN is [*,*]. Default file name and extension are *.
mkdir Create a directory. The PPN specified must not be wild. By default a no-user account is

created, but the -user switch can be used to create a user account. A user account created this
way has no privileges and requires no password to log in.

protect Change the protection code on RSTS files, or set/clear the P (no-delete) flag.
put Copy files from the host system to the RSTS disk. The last argument is a RSTS filespec.

Default name and extension are *. The PPN must not be wild unless -tree is specified. With
-tree, the output RSTS directory is derived from the last directory name in the input filespec,
which must be numeric. The input filespecs are host system filespecs. Existing files are
replaced by new files unless -protect is specified.

rename Rename RSTS files. The new name is given as the output filespec. A PPN is not permitted.
The default name and extension are *. Multiple input specs are allowed, and all are renamed
according to the output spec.

rmdir Delete a directory (account, user or non-user). The directory must be empty. Wild PPN is
allowed.

rts Set the RTS name attribute on RSTS files. The RTS name is the last argument.
type Type one or more files.

2.1 Command synonyms
A number of commands have synonyms, often because the comparable command in RSTS has synonyms. The table
below lists them.

Table 2: Command synonyms

list, directory, ls
type, cat
exit, quit, bye
delete, rm
rts, runtime
rename, mv, move
rebuild, clean
initialize, dskint

3. Switches
Many switches apply only to some commands, but they are recognized at all times. If you use a switch on a
command where it does not apply, it has no effect. The table below lists all the switches.

Table 3: Switches

-ascii Force line oriented transfer mode in get and put.
-binary Force block mode transfer in get and put.
-brief Brief directory listing (name.ext only, 5 across).
-clustersize Output file clustersize in put, UFD clustersize in mkdir, and pack clustersize in

initialize. May be negative for put and mkdir, in which case pack clustersize is
used if supplied value is smaller.

-confirm Ask about copying, deleting, renaming, etc., each file in commands that do file
operations. This command applies to all operations that can act on multiple files, except

4 FLX User’s Guide

for the list command.
-contiguous Make the file contiguous in put.
-create Create the container file as part of initialize. The argument is the container size; it

may be a numeric argument or the name of a disk type (for example RP04). Disk type
names are case-insensitive. All blocks in the created container file are zeroed.

-disk Argument is the filename of the RSTS disk or container file. Valid with all commands.
This switch specifies the disk or container file name for the command on which it is used
only.

-Debug Print various debug information while executing the command. Valid with all
commands

-end Specifies last block number (0-based) in dump. If the argument has a leading 0, it is
octal; otherwise it is decimal. If this switch is omitted, the dump ends on the last block.

-filesize Meaningfule only if -contiguous is specified; forces the output file in put to be that size.
(If omitted and -contiguous is specified, the file is pre-extended to the same size as the
input file.)

-full Full directory listing (includes file attributes) for list.
-hex Display data in hex rather than octal in dump command.
-image Same as -binary.
-long Same as -full.
-merge Specifies merge data file in initialize command. See details below.
-oattributes Display RMS attributes in octal in list.
-protect Set P flag in protect command. In the put command, prevents existing files from

being superseded by input files. In the clean command, makes it a read-only clean (all
consistency checks are done but nothing is changed).

-query Same as -confirm.
-replace Let rename supersede an existing file, if the new name already exists.
-size Same as -filesize
-Size Specifies disk size, for real disk access in cases where the operating system does not

make the size available to the program (e.g., Unix). Normally used along with a -disk
switch specifying the disk name.

-start Specifies first block number (0-base) in dump. If the argument has a leading 0, it is
octal; otherwise it is decimal. If this switch is omitted, the dump starts at block 0.

-summary Display only per-directory summary information (files and blocks) in list.
-tree Copy directory trees (see below).
-unprotect Clear P flag in protect.
-user Create a user account (with no password required and unlimited disk and job quota) in

mkdir.
-verbose Display messages confirming what was done (e.g., copy operations completed). Valid

everywhere, though some commands don’t have anything additional to say.
-wide Do wide dump (include RAD50) in dump.
-Write Override normal write protection: allows writing on disk initialized as read-only, and

allows deleting and modifying files that are write-protected (e.g., protection code <62>).
Does not override the protection provided by the P (no-delete) flag.

-1column Brief directory listing (name.ext only), one file name per line.

4. Some examples
get -v [0,1]*.rts [1,2]*.sav .

Copy all .RTS files from [0,1] and all .SAV files from [1,2], and put them in the current host system directory.
The resulting file names match those of the input files.

 Version 5

put /usr/bin/ls [1,2]*.sav

Copy ls to [1,2]LS.SAV. Since the extension is .SAV, the RTS name is set to RT11, and the runnable bit
set in the protection code. (This is obviously a rather silly example...)

rename [0,1]*.tmp [1,2]*.sav *.foo

Rename all .TMP files in [0,1] and all .SAV files in [1,2], changing their extension to .FOO. (Note that, while
no PPN may be specified on the new filename, the inputs may be in several different directories, or indeed have
wildcard directory specs.)

5. More details on certain commands:
5.1 Get
The get command can either concatenate files, or produce multiple output files. It concatenates if a single filespec
is given as the output spec, and produces separate outputs if a directory spec is used.

The file transfer mode depends on whether concatenation is being done, on switches, and on the RMS attributes of
the input files.

If concatenation is done, line mode transfer is done unless -binary is specified. (Note that the case of a single
input file spec, without wildcards, to a single output filespec, is not considered concatenation. However, if any
wildcards are present, that is concatenation even if only one file ends up matching the wildcard spec.)

If individual transfer is done, the transfer can be forced to line mode with -ascii, or to binary (block) mode with
-binary. Otherwise, the properties of the input file control how that particular file is transferred:

� No RMS attributes (RSTS native format):

� Text file—line mode

� Others—block mode
� Copying a directory - block mode

� RMS sequential format:
� Fixed length records, with recordsize a multiple of 512—block mode

� Otherwise line mode
� Other RMS organizations—block mode
Line mode transfer works for RMS sequential files of any record format, and for “native RSTS” text files (files with
no attributes).

A “text file” is one whose extension indicates it contains text, as opposed to binary data. The extensions that are
considered “text” are:

txt lst map sid log lis rno doc mem bas b2s mac for ftn fth cbl
dbl com cmd bat tec ctl odl ps c h src alg

In line mode, an input file with no attributes is interpreted as a RSTS stream file, with cr/lf line delimiters. Lone line
feeds without preceding carriage return are also treated as delimiters. In any case, the lines are written to the output
file using standard Unix line delimiters (“newline”). (Under DOS, these are then translated to normal DOS line
delimiters by the C I/O library, so you will get a normal DOS text file.) Any trailing nulls in the file are ignored.

In block mode, the input file is read block by block, and is copied exactly as is to the output file in binary mode. In
this case, the output file size will be a multiple of 512 bytes.

6 FLX User’s Guide

5.1.1 Tree transfer mode
If -tree is specified, the input directory name is made part of the output spec (this is meaningful only when doing
individual transfer and the output spec is a directory spec). The PPN is converted to a 6-digit string and that
directory name and the filename are appended to the output spec. If necessary, the directory is created. So the
command

get -tree [1,2]*.sav .

would create (for example) a file ./001002/pip.sav .

5.2 Put
The put command does transfer mode selection similar to get, but since there are no attributes on the input files,
the rules are simpler:

The transfer can be forced to line mode with -ascii, or to binary (block) mode with -binary. Otherwise, the
properties of the input file control how that particular file is transferred:

� Text file—line mode
� Others—block mode
In line mode, the input file is read line by line. At each line ending, a standard RSTS line delimiter (cr/lf) is
inserted. Normally, the input file has “newline” characters (line feed) at end of line, per Unix convention. If the
input file has cr/lf pairs at end of line—for example, if it was a RSTS text file copied in block mode from
somewhere—then the cr/lf is kept as the line end; no additional cr is inserted in that case.

In block mode, the file is read in binary mode, and is written exactly as is to the output RSTS file. If the input file
size is not a multiple of 512 bytes, the last block is filled with zero bytes (nulls) before being written.

The output file protection can be specified explicitly. If it isn’t, it defaults to 60 for non-executable files, 124 for
executable files. Executable files are recognized by their extension (checked against the runnable extensions of the
runtime systems I know of). An executable file will always have its RTS name set. The executable bit in the
protection is turned on only if the protection was defaulted.

Large files (those of size greater than 65535) have the RTS name cleared, and the executable bit in the protection
code is forced off unconditionally, in accordance with standard RSTS rules.

5.2.1 Tree transfer mode
If -tree is specified, the output PPN is normally wild. The input file spec is then used to construct not just the
output file name but the output PPN as well. The last directory name in the path is expected to be a numeric string.
If the output spec is of the form [x,*] then the numeric (decimal) value of the directory name is taken as the
programmer number. If the output spec is [*,x] or [*,*] then the directory name must be at least 4 digits; the low
order 3 digits are the programmer number and the high order digits the project number. (In the case of [*,x] the
programmer number is then ignored.) Examples:

put -tree 10/foo [2,*] produces [2,10]foo.
put -tree 10/foo [*,*] is an error (too few digits)
put -tree 4010/foo [*,*] produces [4,10]foo.
put -tree 4010/foo [*.2] produces [4,2]foo.
put -tree bar/foo [2,*] is an error (directory not numeric)

If necessary, the output directory is created as part of the copy.

 Version 7

5.3 Clean command
The clean command does essentially the same thing as the corresponding RSTS feature (the one in INIT.SYS or in
ONLCLN, usually accessed these days using the MOUNT/REBUILD command). It does have a few extra features:

� “Read only” rebuild, so you can see whether there are any problems in your file system without changing
anything. This is done using the –protect switch. If you use this, you will see all the same messages as with
a normal clean. In addition, anytime the program would normally ask whether you want to proceed, it will
automatically supply “yes (read-only)”. Don’t panic, it uses “yes” so it can continue but it does not actually do
any disk writes.

� Some additional consistency checking and more explanatory messages. By default clean is silent, but you can
get it to tell you a bit about what it’s doing by using the –verbose switch. And if you use –Debug, it will
tell you more detail than you probably wanted.

� Vastly higher performance. The RSTS version has to make several passes over the file system because it uses
flags in the directories to keep track of where it has been. And it doesn’t use a lot of memory for the job. Yes,
these days it could, but if you had to maintain such a complex piece of code in assembly language, would you
want to risk breaking it?

The clean function in FLX, on the other hand, uses separate data structures to keep track of what places it has
been. And it reads entire directories into memory, so just one big read suffices for any directory (and a write,
but only if it had to change something). For example, cleaning an RL02 sized file system may take only a few
seconds.

The clean function will report any file structure inconsistencies or errors it finds. If read-only operation was not
specified, it will also correct such errors. If the correction is minor and doesn’t cause loss of data (for example,
correcting non-standard values in label fields or the like) the correction is made without asking. If the correction
involves possible loss of data, you will be asked whether the change should be made. If you say no, clean will
usually abort. At that point you may be able to read the affected files to capture the data you were about to lose.
Then again, the error may be such that you can’t get to the data involved until the error is fixed. An example of this
sort of problem is duplicate allocation: two files that claim to be using the same block. (Or, worse, two directories
with that sort of problem.)

5.4 Container files and real disks
When manipulating RSTS files for use with a PDP-11 simulator, container files are most often used. These are
simply files, as far as the host OS is concerned, but in FLX and in the simulator they are treated as a disk that has a
RSTS file structure on it. The size of the container file is the size of the disk. Container files can be created as part
of the initialize command by using the -create switch. The argument can be either the desired size in
blocks, or the name of a disk model (e.g., rl01 or rk07).

5.4.1 Real disk access
FLX is also able to access a real disk, if the host OS supports this. For example, under Unix you can specify a disk
name of /dev/rxxx, and flx will access that device. Note that you must specify the raw device.

WARNING!

The real disk access supports both read and write access. FLX will quite happily write on whatever you point it to,
if it looks enough like a RSTS file structure (or if you tell it to create one using the initialize command). Be
careful.

8 FLX User’s Guide

5.4.1.1 Size of real disks
Unfortunately, there is no standard way for a program to find out the size of a real disk. There isn’t even a common
approach that works for more than one Unix. So much for portability!

Therefore, when you tell FLX to access a real disk, you may need to specify the size as well, if for your OS FLX
cannot tell. This is done by specifying the size explicitly, either numerically (in blocks) or by a disk model name,
exactly as in the -create switch. The size can be supplied using the -Size switch (note upper case S), the
second argument of the disk command, or the environment variable RSTSDISKSIZE. For example:

dir -d /dev/rrz0g -Size 10240 [1,2]

5.4.2 Real disk access in DOS
There is some special case handling built into FLX for real disk access under DOS under DJGPP. Unlike Unix, it is
not necessary to specify the size as described above.

With DOS, you would specify the name of a disk (for example A:). If that is a hard disk, FLX will use absolute
DOS I/O to that disk or partition. The size is taken from what DOS reports, which seems to be close but not
necessarily exactly right, so you may need to specify the actual size. (An explicitly supplied size will override what
FLX obtains from the OS.) If you specify the name of a floppy disk, as in the example above, then FLX will do its
I/O using straight BIOS calls. In that case, the size it gets from the BIOS should be accurate and you don’t need to
override it.

5.4.2.1 RX50 access
With DOS, if you access a 5.25” floppy disk (using a 1.2 MB drive, i.e., high density 5.25” drive), FLX assumes this
is a PDP-11 format (RX50 format) floppy rather than a standard IBM-format floppy disk, and it adjusts the BIOS
disk I/O parameters accordingly. So you will be able to use RX50 floppies directly (and you will not be able to use
regular IBM format 5.25” floppies). RX50 floppies are 400k, single sided, 10 sectors per track, 80 tracks. All
sectors are interleaved 2:1. FLX takes care of all this automatically.

5.4.2.2 A note on compilers for DOS
While FLX is generally portable, and should compile with any reasonable C compiler, that is not the case for the
DOS specific direct disk access code. This code, which is in module djabsio.c, is written specifically for the low
level DOS support features in the DJGPP port of the GNU C compiler (V1.2 or thereabouts). It should not be hard
to port to other compilers that give you some sort of access to DOS and BIOS int calls, but it certainly won’t
compile without change. There is also a module borabsio.c, which will compile under the Borland Turbo C++
compiler, but it doesn’t currently support any direct disk access since none appears to be available in the Windows
version of TC++ (which is what I have).

5.4.3 Real disk access with other operating systems
The real disk access works with Unix because you can do normal I/O calls to raw devices, and with DOS because
there is specific code in place to handle that case. Other operating systems are not explicitly covered. Any OS that
lets you specify a device name in a file open call and then do normal read and write to it will allow direct disk
access. (RSTS is such an OS; I suppose you could compile FLX under RSTS, though that would be quite a strange
thing to do! Maybe if you needed read/write access to RDS 0.0 disks...) However, an OS in which direct disk
access requires the use of special OS services will require changes to FLX. VMS is an example: it would require the
use of $assign and $qiow rather than fopen() and read() to do real disk I/O. Anyone interested in this
should create a new module that contains the appropriate routines. Use unxabsio.c as a template. The module
should be compiled to object file absio.o, which is then linked into FLX. Please feed such changes back to the
author for inclusion in later updates.

 Version 9

5.5 Initializing a disk
This section discusses in more details the steps needed to initialize a file system, in particular a bootable one.

1. The first step is to use the initialize command. If you need a new container file, use the -create switch
to create it. The argument to that switch specifies the disk type (which implies the size) or it can be an explicit
size in blocks. The result is a non-bootable disk with the minimal RSTS file structure on it.

2. Next, create any required directories. For a bootable disk, you will as a minimum need to create [1,2], and it
must be a “user” account. The -user switch is used for this. You will probably need to specify the
clustersize, otherwise the default (pack cluster size) is used. It’s usually a good idea to select a clustersize of 16
(the maximum) for [1,2] since it has to have a lot of files in it. (Note that [0,1], which is created by the
initialize command, is always given a clustersize of 16 for that reason.)

3. Now copy over any other files you need. In particular, for a bootable disk you will need a number of files in
[0,1], such as INIT.SYS, DCL.RTS, ERR.ERR, a monitor SIL, and BACKUP.TSK.

4. Once INIT.SYS is in place, you can make the new disk bootable by using the hook command.

5.5.1 The -merge switch
This switch serves a rather specialized but useful purpose. Suppose you want to create a disk that has a RSTS file
system on it but also some other file system. If that other file system does not need to use the first few blocks of the
disk (used by the RSTS boot block and pack label) then this can be done. An example is the CDROM file system,
defined by ISO 9660 (provided the pack cluster size is small enough; a value of 64 will not work).

To create such a hybrid disk, first create the non-RSTS file system in a container file. Make this file no bigger than
necessary, since the space it takes will not be available to RSTS.

Next, initialize the RSTS disk as usual, but include the -merge switch with the non-RSTS container file’s name as
argument. FLX will copy that file into the RSTS container file, starting at block 0, replacing the data in block 0 and
the pack label block with the corresponding RSTS data. Any data beyond the pack label cluster is allocated to file
[0,1]merge.sys. Note that the size of that file will not match the container file size, since neither the boot
block’s device cluster nor the pack label’s pack cluster are included in the size. (The size for merge.sys is the
merge data size - DCS - PCS. If that is <= 0, merge.sys is not created.)

If the boot block or pack label block in the merge file contain non-zero data, you will get a warning message from
FLX to report this, but the initialization will proceed. It is up to you to verify whether this is in fact a problem.

6. What’s on the kit
The FLX kit contains:

� Source (.C) and header (.H) files for FLX. In the ZIP format kit, these have DOS line endings; in the tar file,
they have Unix line endings. Apart from that, they are the same. As noted above, there are several source files
with direct disk I/O routines, all named xxxabsio.c where xxx indicates the platform. Use the one that matches
your platform, or pick one to use as a starting point for creating your own if needed.

� A Makefile, to build FLX under Unix (with GNU GCC, or probably with any other reasonable C compiler).
This file may need minor changes; read the notes in the file for details. File makefile.dos has been edited
for use under DOS, with the DJGPP version of GCC. For other environments, read the comments in either
makefile for guidance on what to change.

� FLX.DOC, the source file for this document (Microsoft Word format), and FLX.PDF, a printable version of
same.

10 FLX User’s Guide

� LICENSE, a text file containing the BSD 3-clause license that applies to FLX. Please take a look at it,
especially if you plan to make changes to FLX.

Note that FLX does not work on Big Endian systems (like Sun or Apple PowerPC based machines). You can build
it, but when you run it, you’ll get an error message indicating that you’re on the wrong kind of system.

FLX should work properly on systems with either a 16-bit or a 32-bit “int”. (It does require that “short int” is 16
bits, and that “long” is 32 bits, so DEC Alpha users may run into problems.) Most testing has been done with 32 bit
int.

